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~ Caterpillars in Liberia threaten
- disaster across region, UN warns.

« Event argument extraction (EAE) from long documents is very
challenging.

 Document-Level EAE (DocEAE) data collection for new
domains is extremely expensive.

« Goal: We want to synthesize novel documents for DocEAE

Novel Inference Framework: We introduce two
methods for DocEAE data generation that meet the
following criteria:
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Key: LLMs struggle to synthesize long documents (10+
sentences) for span annotation tasks like DocEAE!

Methods: We can generate novel EAE samples in low-resource domains using zero in-domain data.
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Experiment #2: Does MLG improve
performance on standard EAE tasks?

Experiment #1: Can we improve few-shot, cross-domain
performance on document-level EAE?
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F1

Role F1

DiscourseEE (10%)

DiscourseEE (10%) + Aug
DiscourseEE (50%)

DiscourseEE (50%) + Aug

DiscourseEE (Full)

DiscourseEE (Full) + Aug

0.13

0.3341
0.163

0.3617
0.18

0.4031

0.059

0.3421
0.092

0.3571
0.106

0.396"

RAMS (10%)

0.134
0.2141

0.128
0.1861

RAMS (10%) + Aug
RAMS (50%)

RAMS (50%) + Aug
RAMS (Full)
RAMS (Full) + Aug

PHEE (10%)
PHEE (10%) + Aug
PHEE (50%)
PHEE (50%) + Aug
PHEE (Full)
PHEE (Full) + Aug

0.323
0.3437
0.388
0.393

0.42

0.5441
0.596
0.599
0.621
0.618

0.298

0.337
0.38
0.375

0.303

0.53"
0.581
0.594
0.618
0.608

0-Shot F1 RDF1

F1

Metric
F1 Standard F1 On All Data

Role F1

Description

Compute F1 For Each Role Individually, Then Take Average
Role F1 for 0-Shot Roles (n=9)

Role F1
0-Shot F1

Role-Depth F1 (RDF1) Role F1 for Semantically Outlying Roles (n=16)

Result #2: Our data augmentation strategy

improves low-resource performance on
DiscourseEE, RAMS, and PHEE.

Result #1: On the DocEE few-shot cross-domain data split,
both methods provide significant improvement on 0-shot
and semantically outlying role types!
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