Document-Level Event-Argument Data Augmentation for Challenging Role Types

Joseph Gatto, Omar Sharif, Parker Seegmiller, Sarah Preum Dartmouth College, Department of Computer Science

PROBLEM

- Event argument extraction (EAE) from long documents is *very* challenging.
- Document-Level EAE (DocEAE) data collection for new domains is *extremely expensive*.
- Goal: We want to synthesize novel documents for DocEAE training

Key: LLMs struggle to synthesize long documents (10+ sentences) for span annotation tasks like DocEAE!

OUR SOLUTION

Novel Inference Framework: We introduce two methods for DocEAE data generation that meet the following criteria:

- □ Cross-Domain Generation: Our methods use zero in-domain training samples to create new training data, relying on out-of-domain data + LLM parametric knowledge. This enables generation of long-tail role types.
- LLM Span Generation Alignment: Each of our methods ensures the desired event argument has accurate span annotation in the synthesized document.

Methods: We can generate novel EAE samples in low-resource domains using zero in-domain data.

Experiment #1: Can we improve few-shot, cross-domain performance on document-level EAE?

Result #1: On the DocEE few-shot cross-domain data split, both methods provide significant improvement on 0-shot and semantically outlying role types!

Experiment #2: Does MLG improve performance on standard EAE tasks?

	F1	Role F1
DiscourseEE (10%)	0.13	0.059
DiscourseEE (10%) + Aug	0.334^{\dagger}	0.342^\dagger
DiscourseEE (50%)	0.163	0.092
DiscourseEE (50%) + Aug	0.361^{\dagger}	0.357^\dagger
DiscourseEE (Full)	0.18	0.106
DiscourseEE (Full) + Aug	0.403^{\dagger}	0.396^{\dagger}
RAMS (10%)	0.134	0.128
RAMS (10%) + Aug	0.214^\dagger	0.186^{\dagger}
RAMS (50%)	0.323	0.298
RAMS (50%) + Aug	0.343^{\dagger}	0.33^{\dagger}
RAMS (Full)	0.388	0.38
RAMS (Full) + Aug	0.393	0.375
PHEE (10%)	0.42	0.303
PHEE (10%) + Aug	0.544^\dagger	0.53^{\dagger}
PHEE (50%)	0.596	0.581
PHEE (50%) + Aug	0.599	0.594
PHEE (Full)	0.621	0.618
PHEE (Full) + Aug	0.618	0.608

Result #2: Our data augmentation strategy improves low-resource performance on DiscourseEE, RAMS, and PHEE.